Сырье для производства пакетов. Исходное сырье для полиэтиленовой пленки

  • сшивание, вспенивание, хлорсульфирование для производства стройматериалов;
  • армирование металлом - увеличивает жесткость, прочность, позволяет получать конструкционные материалы для строительства;
  • сварка (контактная, с использованием трения, разогретого газа) - соединение листов, полотен пленки, элементов жесткой тары.

Полученные в результате упаковочные материалы могут использоваться для пищевой продукции, промышленных, непродовольственных товаров. Такая упаковка универсальна:

  • защищает от влаги, грязи;
  • экономична;
  • подходит для любых товаров;
  • имеет нейтральные химические свойства, безопасный состав;
  • может быть прозрачной, цветной (окрашивается в массе), оформленной с помощью печати;
  • подходит для вторичной переработки (выполняется проще в сравнении с другими полимерами).

Виды

Полимер получают в результате химической реакции, которая проходит в условиях низкого либо высокого давления.

ПВД (ПЭНП, LDPE). Этилен смешивают с кислородом. Газ полимеризуется при нагреве и под давлением в 25 МПа. Продуктивность - 18-20% газа проходит полимеризацию, остаток удаляется из реактора. Полученный полимер после охлаждения гранулируется, проходит сушку. До гранулирования в состав сырья могут вводиться красители. При добавлении пигмента гранулы становятся цветными (полимер сохраняет цвет при дальнейшей обработке).

Молекулярная структура полученного материала - с разветвленными связями, с аморфной кристаллической решеткой, что обеспечивает ему низкую плотность.

Характеристики:

  • масса молекулы: (30-400)*10^3;
  • текучесть расплава: 0,2-20 г/10 мин при 230°C;
  • стеклуется/плавится при температуре -4°C/+105-115°C;
  • плотность: 0,91-0,93 г/см 3 ;
  • коэффициент кристалличности: 60%;

ПНД (ПЭВП, HDPE). Для его получения достаточно давления в 3,4-5,3 МПа. Плотность готового материала за счет сравнительно низкого давления повышается. Полимеризацию чаще всего проводят в виде реакции в растворе органического растворителя (гексана) с добавлением катализатора. Смесь разогревают до 160-250°C, давление - 3,4-5,3 МПа. Полученный раствор проходит дополнительную обработку: удаление остатков гексана, гранулирование, вымывание остатков катализатора. По такой технологии можно изготавливать порошкообразный полиэтилен. Как и ПВД, он может быть цветным при добавлении пигментов.

Характеристики:

  • масса молекулы: (50-1000)*10^3;
  • текучесть расплава: 0,1-15 г/10 мин при 230°C;
  • стеклуется/плавится при температуре -120°C/+130-140°С;
  • плотность: 0,94-0,96 г/см 3 ;
  • коэффициент кристалличности: 70-90%;
  • при производстве дает усадку в 1,5-2%.

В упаковочной промышленности используются полиэтилен, сополимеры этилена следующих дополнительных видов.

Полиэтилен:

  • LLDPE - тонкие, ламинированные, растягивающиеся, ;
  • mLLDPE - используется как дополнительный компонент при производстве пленок;
  • MDPE - для производства методом ротационного формования, может использоваться при изготовлении емкостей, жесткой тары;
  • EPE - вспенивающийся, используется при изготовлении амортизирующей, защитной упаковки для техники, оборудования и т.п.;
  • PEC - хлорированный, может использоваться как модифицирующая добавка при изготовлении упаковочных материалов со специальными свойствами.

Сополимеры этилена:

  • с бутилакрилатом (EBA и др.) - пищевые, многослойные пленки, модификатор полимерного сырья;
  • с метилакриталом (EMA) - модификатор для улучшения совместимости полимеров;
  • с этилакрилатом (EEA) - многослойные пленочные материалы;
  • с винилацетатом (EVA) - пищевая упаковка;
  • с виниловым спиртом (EVOH и др.) - свойства определяются содержанием этилена, используется для пищевых, термоусадочных пленок, формованных материалов;
  • с полиолефиновыми пластомерами (POE, POP) - модификатор для многослойных пленок.

ПВД и ПНД имеют ряд общих физических, химических свойств:

  • устойчивость к действию химии (чем выше плотность и молекулярная масса - тем она устойчивее материал);
  • паро-, газопроницаемость может меняться для готовых материалов с разным количеством слоев, с разной молекулярной структурой, но в любом случае остается низкой;
  • нейтральные химические свойства - не реагирует с щелочными концентратами, с солевыми растворами, с рядом кислот (плавиковая, соляная, карбоновая и др.), с растворителями (включая органические), спиртами, маслами;
  • может разрушаться при контакте с хлором, фтором, раствором азотной кислоты (в концентрации от 50%);
  • может набухать под действием органического растворителя;
  • жесткость - выше для ПНД (может быть твердым), ниже для ПВД (мягкий);
  • физические свойства - сгибается без переломов, сохраняет эластичность в широком диапазоне температур, устойчив к ударным нагрузкам. Не имеет собственного запаха. Диэлектрик. Не впитывает, не поглощает посторонние вещества;
  • выдерживает нагрев на воздухе до +80°C;
  • подвержен фотостарению при продолжительном действии прямых УФ-лучей. Возможно использование фотостабилизаторов;
  • не выделяет вредных или опасных веществ, безвреден, допускается использование для упаковки пищевых продуктов.

Компания «Алита» использует ПВД, ПНД, другие виды полиэтилена в изготовлении полимерных пленок, рукавов, полурукавов, емкостей, других упаковочных материалов.

Полиэтилен - самый дешевый неполярный синтетический полимер из класса полиолефинов, представляющий из себя твердое белое вещество с сероватым оттенком.

Производством полиэтилена занимаются практически все крупнейшие компании нефтехимической промышленности. Основным сырьем для него является этилен. Синтезируют полиэтилен при низком, среднем и высоком давлениях. В основном полиэтилен выпускают в гранулах диаметром от 2 до 5 мм, намного реже в виде порошка.

Существует четыре основных способа производства полиэтилена, с помощью которых получают:

  • полиэтилен высокого давления (ПВД)
  • полиэтилен низкого давления (ПНД)
  • полиэтилен среднего давления (ПСД)
  • линейный полиэтилен высокого давления (ЛПВД)

Производство полиэтилена высокого давления (ПВД) или низкой плотности (ПНП)

В промышленности ПВД получают при высоком давлении путем полимеризации этилена в автоклаве или в трубчатом реакторе. Процесс в реакторе происходит по радикальному механизму под действием кислорода, органических пероксидов (лаурил, бензоил) или их смесей. Смешанный с инициатором, нагретый до семисот градусов и сжатый компрессором до двадцати пяти мегапаскаль, этилен сначала поступает в первую часть реактора, где разогревается до тысяча восемьсот градусов, а потом во вторую - для полимеризации при температуре от 190 до 300 градусов и давлении от 130 до 250 мегапаскалей. В среднем этилен находится в реакторе от 70 до 100 секунд. Степень превращения до двадцати процентов, все зависит от типа и количества инициатора. Из полученного полиэтилена удаляют не прореагировавший этилен, затем его охлаждают и гранулируют. Гранулы подсушивают и упаковывают. Товарный ПВД выпускают в виде неокрашенных и окрашенных гранул.

Производство полиэтилена низкого давления (ПНД) или высокой плотности (ПВП)

ПНД получают в промышленности с помощью низкого давлении. Для этого используют три основных технологии:

  • полимеризация происходит в суспензии
  • полимеризация происходит в растворе (гексане)
  • газофазная полимеризация

Самый распространенный способ - это полимеризация в растворе.

Полимеризация в растворе проводится при температуре от 160 до 2500 градусов и давлении от 3,4 до 5,3 мегапаскалей, контакт с катализатором происходит в течении 10-15 минут. Выделяется полиэтилен из раствора с помощью удаления растворителя: сначала в испарителе, потом в сепараторе и затем в вакуумной камере гранулятора. Гранулированный полиэтилен пропаривается водяным паром (температура, превышающая температуру плавления полиэтилена). Товарный ПНД выпускают в виде неокрашенных и окрашенных гранул и иногда в порошке.

Производство полиэтилена среднего давления (ПСД)

ПСД получают в промышленности при среднем давлении путем полимеризации этилена в растворе. Полиэтилен СД образуется при:

  • температуре - 150 градусов
  • давление до 4 мегапаскалей
  • наличие катализатора (Циглера-Натта)

ПСД из раствора выпадает в виде хлопьев.

Полиэтилен, полученный таким образом, имеет:

  1. средневесовой молекулярный вес до 400 000
  2. степень кристалличности до 90 процентов

Производство линейного полиэтилена высокого давления (ЛПВД) или низкой плотности (ЛПНП)

Линейный полиэтилен высокого давления получают с помощью химической модификации ПВД (при температуре в 150 градусов и 30-40 атмосферах).

ЛПНП по структуре подобен ПЭВП, но имеет более длинные и многочисленные боковые ответвления. Производство линейного полиэтилена происходит двумя способами:

  • газофазная полимеризация
  • полимеризация в жидкой фазе - наиболее популярный

Производство линейного полиэтилена вторым способом происходит в реакторе с сжиженным слоем. В основание реактора подается этилен, полимер же отводят непрерывно, при этом постоянно сохраняя в реакторе уровень сжиженного слоя. Условия: температура около ста градусов, давление от 689 до 2068 кН/м2. Эффективность способа полимеризации в жидкой фазе ниже (два процента превращения за цикл), чем у газофазного (до тридцати процентов превращения за цикл). Однако данный способ имеет и свои плюсы - размер установки значительно меньшее, чем у оборудования для газофазной полимеризации, и существенно ниже капиталовложения. Практически идентичным является способ в реакторе с устройством для перемешивания с использованием циглеровских катализаторов. Пари этом получается наиболее высокий выход.

С недавних пор для производства линейного полиэтилена начали применять технологию, в которой используются металлоценовые катализаторы. Данная технология позволяет получить более высокую молекулярную массу полимера, что способствует увеличению прочности изделия.

ПВД, ПНД, ПСД и ЛПВД отличаются друг от друга и по своей структуре и по своим свойствам, соответственно, и применяются они для решения различных задач.

На ряду с выше перечисленными способами полимеризации этилена существуют и другие, однако промышленного распространения они не получили.

Полиэтилен - полимер , синтезируемый путем полимеризации этилена в различных условиях и при разных катализаторах. В зависимости от температуры, давления и присутствия разных катализаторов возможно получение материалов с принципиально различными свойствами.

Сырье для изготовления полиэтилена

  • Мономер - этилен. Представляет собой простейший олефин (или алкен), при комнатной температуре это бесцветный горючий газ, который легче воздуха.
  • Вещества, необходимые для прохождения реакции. Для полиэтилена высокого давления (ПВД) может применяться кислород или пероксид в качестве инициатора реакции полимеризации. Для полиэтилена низкого давления (ПНД) используют катализаторы Циглера - Натты.
  • Другие мономеры, которые могут участвовать в реакции при изготовлении сополимеров этилена с улучшенными свойствами. Например, бутен или гексен.
  • Присадки и вспомогательные вещества, которые модифицируют итоговые товарные свойства материала. К примеру, некоторые присадки увеличивают долговечность материала, некоторые - ускоряют процесс кристаллизации и т.п.

На практике встречается три вида полиэтилена: низкого, среднего и высокого давления. Принципиальная разница существует между материалом низкого и высокого давления, полиэтилен среднего давления можно считать разновидностью ПНД. Потому рассматривать стоит два кардинально различных процесса полимеризации:

  • Полиэтилен высокого давления (или низкой плотности) получают при температуре не менее 200 °C, при давлении от 150 до 300 МПа, в присутствии инициатора кислорода. В промышленных условиях применяют автоклавы и трубчатые реакторы. Полимеризация проходит в расплаве. Получаемое жидкое сырье гранулируют, на выходе получают небольшие белые гранулы.
  • Полиэтилен низкого давления (или высокой плотности) изготавливается при температуре 100 — 150 °C при давлении до 4 МПа. Обязательное условие прохождения реакции - присутствие катализатора Циглера – Натты, в промышленных условиях чаще всего применяется смесь хлорида титана и триэтилалюминий или другие алкилпроизводные вещества. Чаще всего полимеризация проходит в растворе гексана. После прохождения полимеризации вещество проходит грануляцию в вакуумных условиях, приобретая товарную форму.

Технология производства линейного полиэтилена средней плотности и низкой плотности

Отдельно следует сказать о производстве линейного полиэтилена . Он отличается от обычного полимера тем, что имеет особую структуру: большое количество коротких молекулярных цепочек, дающих материалу особые свойства. Продукт сочетает эластичность, легкость и увеличенную прочность.

Процесс производства предполагает присутствие других мономеров для реакции сополимеризации, чаще всего - бутена или гексена, в редких случаях - октена. Наиболее эффективный способ производства - полимеризация в жидкой фазе, в реакторе с температурой около 100 °C. Для повышения плотности линейного полиэтилена применяют металлоценовые катализаторы.

Автоматизация процесса производства полиэтилена высокого давления необходима для контроля сложных химико-технологических процессов, предупреждения поломок технологического оборудования, сокращения производственных расходов и повышения уровня безопасности труда на предприятии. Внедрение АСУ в производственный процесс приносит множество выгод предприятиям химической промышленности, решая комплекс задач, связанных с контролем и управлением производством.

Автоматизированная система позволяет повысить производительность реактора, обеспечить высокую скорость процесса, снизить вредность производственной зоны, уменьшить себестоимость полиэтилена, увеличить выход готового продукта и повысить его качество. Автоматизация высокосложных химико-технологических процессов, чувствительных к любым отклонениям, делает производство полиэтилена управляемым, предсказуемым и контролируемым.

Функции АСУ ТП полиэтилена высокого давления:

  1. диагностика состояния технологического оборудования;
  2. программно-логическое управление технол. агрегатами;
  3. прогнозирование показателей качества полиэтилена,
  4. анализ технологических данных, обработка и хранение;
  5. визуальное отображение информации на экране оператора;
  6. контроль процесса, предаварийная сигнализация, блокировка.

Автоматизацию рассматривают как высокоэффективный инструмент, который позволяет владеть всей необходимой технологической информацией. АСУ ТП помогает защитить производственный процесс от аварийных ситуаций, дистанционно управлять процессами, контролировать каждый технологический этап. Состав технических и программных средств, используемых для построения АСУ ТП, определяется функциями системы и требованиями к ней. Автоматизироваться могут как отдельные процессы, так и производство полиэтилена в целом.

АСУ ТП производства полиэтилена высокого давления может строиться как по двухуровнему, так и по трехуровнему принципу. Нижний уровень – это программируемые контроллеры, программное обеспечение которых ведет сбор данных с датчиков, последующее формирование и выдачу воздействий на механизмы, а также обмен информацией с верхнем уровнем. Верхний уровень – это рабочие места технологов и операторов, которые получают технологическую информацию в цифровом и графическом виде. На основании данных контролируют процессы: задают режим работы системы, вносят изменения в работу установок и др.

Достоинства полиэтилена высокого давления

Полиэтилен высокого давления (ГОСТ 16337-77) имеет еще одно название – это «полиэтилен низкой плотности». Также пластический материал имеет такие сокращения, как: LDPE, ПЭНП, ПВД, ПЭВД. Существует более 30 базовых марок полиэтилена, на гибком автоматизированном предприятии возможно быстро вносить изменения в рецептуру продукта и переходить с выпуска одной марки материала на другую. Производители полимеров имеют стратегическое значение для развития экономики и промышленности.

Производством ПЭВД занимаются: ОАО «НефтеХимСэвилен», ОАО «Полимир», ООО «Волжский Завод Полимеров», ЗАО АК «Химпэк», ООО «Томскнефтехим», ОАО «Казаньоргсинтез», «Шуртанский газохимический комплекс», ОАО «Ангарский завод полимеров», ОАО «Салаватнефтеоргсинтез», ОАО «Уфаоргсинтез». Изделия из полиэтилена высокого давления используют в строительстве, радиотехнике, электротехнике, сельском хозяйстве, пищевом и химическом производстве, горнодобывающей промышленности, автомобилестроении, ЖКХ и других отраслях. ПЭВД отличают выразительные физико–механические свойства.

Таблица 1: Основные физико-механические свойства ПЭВД


Из полиэтилена высокого давления производят гибкую упаковку, пленчатые изделия, полиэтиленовые пленки, термопленку, пакеты, пищевую упаковку, парниковую пленку, многослойную упаковку. Термопластичный полимер этилена применяют для выпуска кабелей, оболочки шнуровых изделий, тары (банки, канистры, горшки, ведра, садовый инвентарь), диэлектрических антенн, полимерных труб, листов, деталей технической аппаратуры, шлангов, оборудования химических производств. Материал используют для облицовки каналов и футеровки кранов, арматуры, аппаратуры, трубопроводов.

Достоинства полиэтилена высокого давления:

  • Химическая стойкость;
  • Механическая прочность;
  • Влаго – и термостойкость;
  • Ударостойкость;
  • Электроизоляционный материал;
  • Коррозионная стойкость;
  • Радиационная стойкость;
  • Мягкость и эластичность;
  • Низкая газопроницаемость;
  • Нетоксичность, безвредность;
  • Стойкость к перепадам температур;
  • Низкая поглотительная способность.

Переработка полиэтилена высокого давления производится такими способами, как: литье на термопластавтомате, экструзия в экструдере, прессование с помощью горячего пресса. Для производства полиэтилена используют: реакторный блок, насосы, холодильную установку, сепаратор, компрессоры, отделитель, теплообменник и другое оборудование. Сырьем для производства полиэтилена высокого давления служит этилен (без примесей) высокой степени чистоты.

Различают 2 типа установок для полимеризации этилена – это автоклавы с мешалкой и трубчатые реакторы. Целевой продукт получают путем полимеризации этилена под высоким давлением, температурой и смешении с кислородом. На завершающей стадии технологического процесса полимеризированную жидкую массу подвергают обработке в сепараторе, а затем в пресс-грануляторе для получения гранул полиэтилена (гранулирование).

Функции АСУ ТП полиэтилена высокого давления

К процессу полимеризации предъявляются жесткие требования. Для него характерны: высокая скорость, температура и давление. От данных показателей зависит степень полимеризации, качество полиэтилена и безопасность производства. Автоматизация процесса производства полиэтилена высокого давления обеспечивает точное соблюдение параметров технологического процесса, помогает уменьшить влияние субьективных факторов (ошибок сотрудников) и сократить расход ресурсов (воды, пара, тепла, газа). Система позволяет исключить выход контролируемых параметров за допустимые пределы. В функции системы входит: АСУТП дозирование реагентов, управление температурным режимом; учет технико-экономических показателей; изменение рецептуры; управление исполнительными механизмами и электродвигателями насосов и другие.

АСУ ТП позволяет контролировать такие показатели, как:

  • - давление в системе;
  • - температуру нагрева;
  • - степень конверсии мономера;
  • - расход этилена и инициатора;
  • - рабочее давление в реакторе;
  • - скорость полимеризации;
  • - количество инициирующего вещества;
  • - длительность воздействия.

Полиэтилен низкой плотности (высокого давления) выпускают в гранулах (неокрашенных и окрашенных) и в виде порошка. Гранулированный полиэтилен по сравнению с порошковым имеет высокие технико-экономические преимущества за счет того, что его легче транспортировать, хранить, дозировать, фасовать и перемещать. Полиэтилен в гранулах легче извлечь из загрузочного устройства или тарного мешка: он не скапливается в узлах агрегатов, не электризуется, не налипает на стенки оборудования. Для автоматизации процесса гранулирования внедряют автоматизированные линии.

Так, все технологические этапы - от приема и подготовки сырья до гранулирования и расфасовки готового продукта, выполняются без прямого участия человека. Оператору поступает вся требуемая информация о протекании технологических процессов. Оперативный персонал в дистанционном режиме может проводить качественный анализ химического производства, выгружать технико–экономические расчеты, контролировать работу устройств для резки, насосов, вибросит, транспортеров, экструдеров-грануляторов и других технологических агрегатов. Результатом автоматизации завода полиэтилена высокого давления становится рост производительности труда и повышение эффективности всего производства.

Заказать внедрение АСУ ТП производства полиэтилена высокого давления

ООО «Олайсис» - российская инжиниринговая компания предлагает высокоэффективные ИТ-решения для автоматизации предприятий по выпуску полиэтилена высокого давления. Мы выполняем разработку и внедрение АСУ ТП высокого научно-технического уровня, адаптированных к требованиям производства ПЭВД. Автоматизация существенно упрощает заведомо сложные технологические операции, значительно улучшает организацию труда персонала, обеспечивает наращивание объемов производства, помогает объективно оценивать состояние предприятия и своевременно принимать решения при отклонении технологических параметров. Специалисты нашей компании являются экспертами в вопросах сборки шкафов автоматики, подбора и комплектации взрывобезопасного оборудования для промышленной эксплуатации.

Использование изношенных и устаревших средств управления и контроля увеличивает риск нарушений технологического режима, снижает уровень промышленной безопасности, ведет к ухудшению показателей качества и повышает трудоемкость продукции. В нашем каталоге вы можете заказать оборудование, КИПиА, контроллеры, промышленные компьютеры и компоненты автоматики для модернизации нефтехимического производства. Если вы желаете совершенствовать процессы пиролиза, конверсии и повысить мощность вашего предприятия, то обращайтесь в нашу компанию.

Мы готовы провести обследование вашего предприятия, выявить резервы повышения производительности, помочь с выбором оборудования и элементов автоматики. Более 10 лет на рынке АСУ ТП наша компания ведет разработку и внедрение экономически эффективных систем. Наши решения учитывают потребности как строящихся заводов полиэтилена высокого давления, так и реконструируемых объектов. Создаем системы «с нуля», а также работаем с АСУ, разработанными сторонними компаниями. Также приглашаем партнеров к совместному развитию, разработке комплексных решений, внедрению интеллектуальной продукции.

Промышленное производство полиэтилена было осуществлено в 1938 г. под высоким давлением (около 150 МПа) и 180 – 200 0 С в присутствии следов кислорода по радикальному механизму.

Важным этапом в развитии производства полиолефинов явилось открытие Циглером катализаторов – комплексов алкилалюминия и хлоридов титана, которые вызывали полимеризацию этилена, пропилена и других олефинов при атмосферном давлении. В настоящее время количество таких катализаторов значительно увеличилось. Они представляют собой комплексы, состоящие из металлорганических соединений Al, Be, Mg, Zn, Cd, Ba, Na и хлоридов металлов IV, V, VI и VIII групп, т. е. элементов с незаполненной промежуточной электронной оболочкой. Чаще всего используют хлориды титана TiCl 4 и TiCl 3 , причём TiCl 4 при взаимодейтивии с металлалкилами, в частности Al(C 2 H 5) 3 , восстанавливается до соединений более низкой валентности. В зависимости от природы компонентов катализаторов, а также числа заместителей в олефине можно получать стереорегулярные полиолефины различной пространственной конфигурации: изотактические, синдиотактические и т. п.

Различная степень кристалличности и характер структуры определяют комплекс ценных физико-механических свойств полиолефинов, полученных на катализаторах Циглера – Натта.

Важной явилось разработка полимеризации олефинов (метод Филлипса) при давлении 3,5 – 7 МПа и 130 – 170 0 С в среде инертного углеводорода в присутствии катализатора, состоящего из оксидов металлов переменной валентности, например оксидов хрома, нанесённых на алюмосиликат. Существует несколько модификаций этого метода, носящих общее название полимеризации при среднем давлении. Различные способы промышленного производства позволяют получать полиэтилен с различными свойствами.

Тепловой эффект полимеризации этилена составляет около 4200 кДж/кг. В это число входит теплота полимеризации этилена, рассчитанная по энергиям связи и равная 3653 кДж/кг, теплота, выделяющаяся при переходе газообразного продукта (этилена) в твёрдый продукт (полиэтилен), а также теплота растворения этилена в жидком углеводороде (в случае полимеризации при низком давлении).

Формула полиэтилена [–CH 2 –CH 2 –] n является формальной. Полиэтилен – разветвлённый полимер, в его структуре имеются следующие аномальные звенья:

~CH 2 –CH~; ~CH 2 –CH=CH 2 ; ~CH 2 –С–CH 2 ~; ~CH 2 –СН=СH–CH 2 ~

…………….CH 3 …………………………. CH 2

Полиэтилен представляет собой твёрдый продукт. В зависимости от метода получения он обладает различными свойствами и может быть двух типов: полиэтилен, получаемый при высоком давлении (низкой плотности) и полиэтилен, получаемый при низком и среднем давлениях (высокой плотности). Однако этот признак условен. Плотность можно изменять в пределах метода.


Физико-химические и механические свойства полиэтилена зависят главным образом от структуры полимера и его молекулярной массы. Для полиэтилена высокого давления характерны разнозвенность, большая эластичность, меньшая хрупкость, более низкая температура размягчения (108 – 120 0 С) по сравнению с полиэтиленом, получаемым при низком давлении. Полиэтилен с молекулярной массой около 3*10 6 обладает исключительно высокой прочностью, что очень ценно при производстве волокна и композиционных материалов.

Полиэтилен при комнатной температуре нерастворим ни в одном из известных растворителей и только при 80 0 С и выше он начинает заметно растворяться в четырёххлористом углероде, трихлорэтилене, бензоле, толуоле, ксилоле. При охлаждении раствора полимер выпадает в осадок.

Полиэтилен обладает высокой водостойкостью и химической стойкостью. При температурах до 60 – 80 0 С он устойчив к действию щелочей и кислот, в том числе и фтороводородной, за исключением концентрированной азотной кислоты.

При нагревании полиэтилена на воздухе уже при 120 0 С начинается его окисление, сопровождающееся поперечной сшивкой линейных макромолекул и образованием нерастворимых полимеров. При температуре выше 290 0 С полиэтилен деструктируется с образованием жидких маслянистых и газообразных продуктов, в том числе небольшого количества (около 3%) мономера. При воздействии ультрафиолетовых лучей, кислорода воздуха и тепла в процессе переработки и эксплуатации полиэтилен стареет, что проявляется в ухудшении его физико-механических и диэлектрических свойств.

Полиэтилен применяют в различных областях народного хозяйства. Наиболее широко применяется полиэтилен высокого давления для изготовления плёнок, листов, труб, шлангов, бочек, вёдер. Он применяется в кабельной промышленности, радиотехнике, химической промышленности, сельском хозяйстве, для облицовки каналов, в строительстве. Полиэтилен низкого давления, а также его сополимеры с пропиленом применяются в строительстве для изготовления труб и санитарно-технических изделий. Полиэтилен низкого давления представляет собой неэластичный полимер, плавящийся и приобретающий свойства эластомера при температуре 130 0 С. По мере увеличения содержания пропилена в сополимере увеличивается гибкость, снижается кристалличность. Сополимер с 20 мол. % содержанием пропилена имеет ценные свойства и получается как по методу Циглера – Натта при низком давлении, так и при 3,5 – 4 МПа с применением оксидов металлов в качестве катализатора. При соотношении два звена этилена на одно звено пропилена можно получить эластомер низкого давления со средней молекулярной массой 80 000 – 500 000 и степенью кристалличности 58 – 75 %. По сравнению с полиэтиленом низкого давления сополимер отличается повышенным сопротивлением растрескиванию под действием длительных нагрузок.

Полиэтилен высокого давления (низкой плотности)

В промышленности полиэтилен высокого давления (ПЭВД) получают полимеризацией этилена в конденсированной газовой фазе в присутствии радикальных инициаторов при давлении 150 – 300 МПа и температуре 200 – 280 0 С. Получаемый полиэтилен имеет плотность 920 -930 кг/м 3 , среднемассовую молекулярную массу 80000 – 500000 и степень кристалличности 50 – 65 %.

Регулирование плотности полиэтилена и длины цепи осуществляется варьированием условий полимеризации (давления и температуры), а также введением различных добавок (водорода, пропана, изобутана, спиртов, альдегидов, кетонов). Поскольку высокомолекулярный полиэтилен образуется только при высокой концентрации этилена, полимеризацию осуществляют при высоких давлениях, при которых плотность и концентрация этилена в 450 – 500 раз больше, чем при атмосферном давлении. Высокое давление способствует сближению реагирующих молекул и гомогенности реакционной среды. Процесс проводят в конденсированной фазе мономера в присутствии кислорода или инициаторов радикальной полимеризации.

При взаимодействии этилена с кислородом образуются пероксидные или гидропероксидные соединения этилена:

CH 2 =CH 2 + O 2 ⟶ CH 2 –CH 2 или CH=CH 2

…………………... O ¾ O ……... OOH

Неустойчивая пероксидная связь –О–О– под действием тепла подвергается гомолитическому разрыву с образованием би- и монорадикалов: *OCH 2 – CH 2 O* и CH 2 =CHO*. Свободные радикалы инициируют полимеризацию этилена. Свободные радикалы входят в состав полимера и, следовательно, расходуются в процессе полимеризации.

В процессе синтеза образуется линейный полимер, содержащий боковые ответвления (короткие и длинные) длиной в 2 – 5 атомов углерода, расположенные хаотически примерно на расстоянии 50 углеродных атомов друг о друга. Реже возможно образование макромолекул с длиной боковой цепью, сопоставимой с длиной основной цепи. На концах цепи содержатся СН 3 группы. Макромолекула полиэтилена высокого давления может содержать винильные и диеновые группы в количестве 4 – 6 на 10 000 атомов углерода.

Разветвлённость макромолекул ПЭВД ограничивает степень кристалличности 55 – 60 % .

Полиэтилен высокого давления – неполярный, аморфно – кристаллический полимер с температурой плавления 103 – 110 0 С. Молекулярная масса промышленных марок колеблется от 30 000 до 500 000.

Эффективность полимеризации этилена обусловлена высокой скоростью реакции, свойствами образующегося полиэтилена, а также степенью конверсии мономера за один проход. Эффективность полимеризации зависит от температуры, давления, концентрации инициатора и времени пребывания мономера в реакторе.

С повышением температуры возрастает скорость полимеризации и степень конверсии мономера, но уменьшается молекулярная масса полимера. С повышением температуры увеличивается количество двойных связей в полиэтилене и степень его разветвлённости.

При увеличении давления возрастают скорость полимеризации и степень конверсии мономера, а также молекулярная масса и плотнось полиэтилена, улучшаются физико – механические свойства продукта.

Для повышения степени конверсии этилена в зону реакции иногда вводят новую порцию инициатора, что позволяет увеличить выход продукта с единицы объёма реакционного пространства.

В промышленности для производства полиэтилена высокого давления применяются в основном два типа установок, различающихся конструкцией реактора для полимеризации этилена. Реакторы представляют собой либо трубчатые аппараты, работающие по принципу идеального вытеснения, либо вертикальные цилиндрические аппараты с перемешивающим устройством - автоклавы с мешалкой, работающие поп принципу идеального смешения.

Для получения полиэтилена с достаточно высокой молекулярной массой и плотностью полимеризацию проводят при высоких давлениях. Для этого применят толстостенные металлические трубы. Кроме того, полиэтилен имеет самую высокую теплоту полимеризации среди мономеров олефинового ряда, что требует эффективного теплоотвода.

Для обеспечения высоких скоростей процесса (и тем самым высокой производительности реактора при ограниченном объёме реакционного пространства) полимеризацию проводят при максимально допустимых температурах (200 – 300 0 С). Верхний температурный предел зависит от рабочего давления в реакторе и ограничен условиями взрывобезопасности (из-за возможности разложения этилена при критических температурах), заданной молекулярной массой и молекулярно-массовым распределением.

Трубчатый реактор имеет ряд преимуществ по сравнению с автоклавным.

Во-первых, в трубчатом реакторе осуществляется больший теплосъём через стенку, чем в автоклаве. Конверсия этилена в полиэтилен в автоклаве ниже. В трубчатом реакторе получается продукт с более широким молекулярно-массовым распределением, что важно при производстве плёнок, кабельных покрытий и др.

Во-вторых, при полимеризации в трубчатом реакторе можно использовать в качестве инициатора дешёвый кислород, т. е. исключить подачу парафинового масла с пероксидным инициатором.

Подача различных инициаторов в разные зоны реактора позволяет варьировать свойства получаемого полиэтилена.

Понравилась статья? Поделитесь ей
Наверх